Fottea 2022, 22(1):122-136 | DOI: 10.5507/fot.2021.019

Rhodomonas storeatuloformis sp. nov. (Cryptophyceae, Pyrenomonadaceae), a new cryptomonad from the Black Sea: morphology versus molecular phylogeny

Antonina N. Khanaychenko1, Olga V. Popova2, Olga A. Rylkova1, Vladimir V. Aleoshin2, 3, Larisa O. Aganesova1, Maria Saburova4*
1 A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Leninskii ave., 38/3, Moscow, 119991, Russian Federation
2 Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1/40, 119991 Moscow, Russian Federation
3 Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., 19/1, 127051 Moscow, Russian Federation
4 Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. BOX 1638, Salmiya 22017, Kuwait; *Corresponding author e-mail: msaburova@gmail.com

We established a new cryptomonad species, Rhodomonas storeatuloformis sp. nov., based on morphological and molecular characters of cultured strain isolated from the Black Sea. Cells are slightly dorsoventrally flattened, obloid in shape, 12-19 µm in length and 5-10 µm in width, with light-brown, parietal H-shaped chloroplast and a central pyrenoid. Two unequal flagella are located subapically in a short V-shaped vestibulum with a ligule on the left side. Cells are covered by a sheet-like papillate perisplast with numerous small underlain ejectosomes; discharged ejectosomes form distinctly visible minute pores. Mid-ventral band is absent. In general, cell morphology is very similar to described strains of Storeatula genus. However, phylogenetic analyses based on sequences of the partial nuclear 18S, 28S rDNA, and complete internal transcribed spacer (ITS) region of rDNA placed the novel cryptomonad strain within Rhodomonas genus as a separate clade. The predicted secondary structure of nuclear rDNA ITS2 has numerous compensatory base changes compared to the closest relative strains that support the distinction of the novel species among Rhodomonas taxa. The present results contribute to the study on still hidden cryptomonad biodiversity in the Black Sea. Contradiction between morphology and phylogenetic data in R. storeatuloformis further argues for revision of the generic delineations in the family Pyrenomonadaceae.

Keywords: Black Sea, compensatory base changes, ITS2; rDNA phylogeny, Rhodomonas storeatuloformis sp. nov., SEM, taxonomy

Received: May 25, 2021; Revised: August 3, 2021; Accepted: September 29, 2021; Prepublished online: January 11, 2022; Published: April 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Khanaychenko, A.N., Popova, O.V., Rylkova, O.A., Aleoshin, V.V., Aganesova, L.O., & Saburova, M. (2022). Rhodomonas storeatuloformis sp. nov. (Cryptophyceae, Pyrenomonadaceae), a new cryptomonad from the Black Sea: morphology versus molecular phylogeny. Fottea22(1), 122-136. doi: 10.5507/fot.2021.019
Download citation

Attachments

Download fileFot_2022_1_122-136_suppl.tif

File size: 708.05 kB

References

  1. Adolf, J.E.; Place, A.R.; Stoecker, D.K. & Harding, L.W.Jr. (2007): Modulation of polyunsaturated fatty acids in mixotrophic Karlodinium veneficum (Dinophyceae) and its prey, Storeatula major (Cryptophyceae). - J. Phycol. 43: 1259-1270. Go to original source...
  2. Altenburger, A.; Blossom, H.E.; Garcia-Cuetos, L.; Jakobsen, H.H.; Carstensen, J.; Lundholm, N.; Hansen, P.J.; Moestrup, Ø. & Haraguchi, L. (2020): Dimorphism in cryptophytes - The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. - Sci. Adv. 6: eabb1611. Go to original source...
  3. Andersen, R.A. (2005): Algae Culturing Technique. - 578 pp., Elsevier Academic Press, New York.
  4. Bermúdez, J.; Rosales, N.; Loreto, C.; Briceño, B. & Morales, E. (2004): Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. - World J. Microbiol. Biotechnol. 20: 179-183. Go to original source...
  5. Bistricki, T. & Munawar, M. (1978): A rapid preparation method for scanning electron microscopy of Lugol preserved algae. - J. Microsc. 114: 215-218. Go to original source...
  6. Bourrain, M.; Achouak, W.; Urbain, V. & Heulin, T. (1999): DNA extraction from activated sludges. - Curr. Microbiol. 38: 315-319. Go to original source...
  7. Buma, A.G.J.; Gieskes, W.W.C. & Thomsen, H.A. (1992): Abundance of Cryptophyceae and chlorophyll b-containing organisms in the Weddell-Scotia confluence area in the spring of 1988. - Polar. Biol. 12: 43-52. Go to original source...
  8. Butcher, R.W. (1967): An Introductory Account of the Smaller Algae of British Coastal Waters. Part IV: Cryptophyceae. - Fishery Investigations, ser. IV, Ministry of Agriculture, Fisheries and Food, London.
  9. Cerino, F. & Zingone, A. (2006): A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. - Eur. J. Phycol. 41: 363-378. Go to original source...
  10. Cerino, F. & Zingone, A. (2007): Decrypting cryptomonads: A challenge for molecular taxonomy. - In: Brodie, J. & Lewis, J. (eds): Unravelling the Algae: the Past, Present, and Future of Algal Systematics, Vol. 75. - pp. 197-211, CRC Press, Boca Raton. Go to original source...
  11. Clay, B.L. (2015): Cryptomonads. - In: Wehr, J., Sheath, R. & Kociolek, J.P. (eds): Freshwater Algae of North America. - pp. 809-850, Elsevier Inc, London, Waltham. Go to original source...
  12. Clay, B.L.; Kugrens, P. & Lee R.E. (1999): A revised classification of Cryptophyta. - Bot. J. Linn. Soc. 131: 131-151. Go to original source...
  13. Coleman, A.W. (2000): The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. - Protist 151: 1-9. Go to original source...
  14. Coleman, A.W. (2007): Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. - Nucleic Acids Res. 35: 3322-3329. Go to original source...
  15. Coutinho, P.; Ferreira, M.; Freire, I. & Otero, A. (2020): Enriching rotifers with "premium" microalgae: Rhodomonas lens. - Mar. Biotechnol. 22: 118-129. Go to original source...
  16. Czypionka, T.; Vargas, C.A.; Silva, N.; Daneri, G.; González, H.E. & Iriarte, J.L. (2011): Importance of mixotrophic nanoplankton in Aysen Fjord (Southern Chile) during austral winter. - Cont. Shelf Res. 31: 216-224. Go to original source...
  17. Deane, J.A.; Strachan, I.M.; Saunders, G.W.; Hill, D.R. & McFadden, G.I. (2002): Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. - J. Phycol. 38: 1236-1244. Go to original source...
  18. Dolgin, A. & Adolf, J. (2019): Scanning electron microscopy of phytoplankton: Achieving high quality images through the use of safer alternative chemical fixatives. - J. Young Investig. 37: 1-9. Go to original source...
  19. Dunstan, G.A.; Brown, M.R. & Volkman, J.K. (2005): Cryptophyceae and Rhodophyceae; Chemotaxonomy, phylogeny, and application. - Phytochemistry 66: 2557-2570. Go to original source...
  20. Edgar, R.C. (2004): MUSCLE: multiple sequence alignment with high accuracy and high throughput. - Nucleic Acids Res. 32: 1792-1797. Go to original source...
  21. Fields, S.D. & Rhodes, R.G. (1991): Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). - J. Phycol. 27: 525-529. Go to original source...
  22. Gelman, A. & Rubin, D.B. (1992): Inference from iterative simulation using multiple sequences. - Stat. Sci. 7: 457-472. Go to original source...
  23. Gervais, F. (1997): Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. - J. Phycol. 33: 18-25. Go to original source...
  24. Guiry, M.D. & Guiry, G.M. (2021): AlgaeBase. - World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 24 February 2021.
  25. Gusev, E.; Podunay, Y.; Martynenko, N.; Shkurina, N. & Kulikovskiy, M. (2020): Taxonomic studies of Cryptomonas lundii clade (Cryptophyta: Cryptophyceae) with description of a new species from Vietnam. - Fottea 20: 137-143. Go to original source...
  26. Hall, T.A. (1999): BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. - Nucleic Acids Symp. Ser. 41: 95-98.
  27. Hammer, A.C. & Pitchford, J.W. (2006): Mixotrophy, allelopathy and the population dynamics of phagotrophic algae (cryptophytes) in the Darss Zingst Bodden estuary, southern Baltic. - Mar. Ecol. Prog. Ser. 328: 105-115. Go to original source...
  28. Han, M.S. & Furuya, K. (2000): Size and species-specific primary productivity and community structure of phytoplankton in Tokyo Bay. - J. Plankton Res. 22: 1221-1235. Go to original source...
  29. Hill, D.R.A. (1991): A revised circumscription of Cryptomonas (Cryptopbyceae) based on examination of Australian strains. - Phycologia 30: 170-188. Go to original source...
  30. Hill, D.R. & Wetherbee, R. (1986): Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. - Phycologia 25: 521-543. Go to original source...
  31. Hill, D.R.A. & Wetherbee, R. (1988): The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). - Phycologia 27: 355-365. Go to original source...
  32. Hill, D.R.A. & Wetherbee, R. (1989): A reappraisal of the genus Rhodomonas (Cryptophyceae). - Phycologia 28: 143-158. Go to original source...
  33. Hoef-Emden, K. (2007): Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. - Phycologia 46: 402-428. Go to original source...
  34. Hoef-Emden, K. (2008): Molecular phylogeny of phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. - J. Phycol. 44: 985-993. Go to original source...
  35. Hoef-Emden, K. (2012): Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case. - PLoS One 7: e43652. Go to original source...
  36. Hoef-Emden, K. & Melkonian, M. (2003): Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. - Protist 154: 371-409. Go to original source...
  37. Hoef-Emden K. & Archibald J.M. (2016): Cryptophyta (Cryptomonads). - In: Archibald, J.M. Simpson, A.G.B. & Slamovits, C.H. (eds): Handbook of the Protists. - pp. 851-891, Springer International Publishing, Cham, Switzerland. Go to original source...
  38. Hoef-Emden, K.; Marin, B. & Melkonian, M. (2002): Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. - J. Mol. Evol. 55: 161-179. Go to original source...
  39. Johnson, M.D.; Beaudoin D.J.; Laza-Martinez, A.; Dyhrman, S.T.; Fensin, E.; Lin, S. & Stoecker, D.K. (2016): The genetic diversity of Mesodinium and associated cryptophytes. - Front. Microbiol. 7: 2017. Go to original source...
  40. Khanaychenko, A.N. (1999): The effect of microalgal diet on copepod reproduction parameters. - Ekologia Morya 49: 56-61 (in Russian, with summary in English). Go to original source...
  41. Khanaychenko, A.; Mukhanov, V.; Aganesova, L.; Besiktepe, S. & Gavrilova, N. (2018): Grazing and feeding selectivity of Oithona davisae in the Black Sea: Importance of cryptophytes. - Turkish J. Fish. Aquat. Sci. 18: 937-949. Go to original source...
  42. Kim, H.S.; Kim, J.H.; Jo, S.G.; Rho, J.R. & Yih, W. (2020): Amino acids and fatty acids composition in mass-cultured Teleaulax amphioxeia strains with notable potential for rotifer (Brachionus plicatilis) enrichment. - J. World Aquac. Soc. 51: 712-728. Go to original source...
  43. Klaveness, D. (1988): Ecology of the Cryptomonadida: A first review. - In: Growth and Reproductive Strategies of Freshwater Phytoplankton. - pp. 105-33, Cambridge University Press, Cambridge.
  44. Krasnova, E.D.; Pantyulin, A.N.; Matorin, D.N.; Todorenko, D.A.; Belevich, T.A.; Milyutina, I.A. & Voronov, D.A. (2014): Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. - Microbiology 83: 270-277. Go to original source...
  45. Kugrens, P.; Clay, B.L. & Lee, R.E. (1999): Ultrastructure and systematics of two new freshwater red cryptomonads, Storeatula rhinosa, sp. nov. and Pyrenomonas ovalis, sp. nov. - J. Phycol. 35: 1079-1089. Go to original source...
  46. Lane, C.E.; Khan, H.; MacKinnon, M.; Fong, A.; Theophilou, S. & Archibald, J.M. (2006): Insight into the diversity and evolution of the cryptomonad nucleomorph genome. - Mol. Biol. Evol. 23: 856-865. Go to original source...
  47. Laza-Martínez, A. (2012): Urgorri complanatus gen. et sp. nov. (Cryptophyceae), a red-tide-forming species in brackish waters. - J. Phycol. 48: 423-435. Go to original source...
  48. Majaneva, M.; Remonen, I.; Rintala, J.-M.; Belevich, I.; Kremp, A.; Setälä, O. & Blomster, J. (2014): Rhinomonas nottbecki n. sp. (Cryptomonadales) and molecular phylogeny of the family Pyrenomonadaceae. - J. Eukaryot. Microbiol. 61: 480-492. Go to original source...
  49. Marin, B.; Klingberg, M. & Melkonian, M. (1998): Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. - Protist 149: 265-276. Go to original source...
  50. Marshall, W. & Laybourn-Parry, J. (2002): The balance between photosynthesis and grazing in Antarctic mixotrophic cryptophytes during summer. - Freshwater Biol. 47: 2060-2070. Go to original source...
  51. Medlin, L.K. & Schmidt, K. (2010): Molecular probes improve the taxonomic resolution of Cryptophyte abundance in Arcachon Bay, France. - Vie et Milieu 60: 9-15.
  52. Medlin, L.K.; Piwosz, K. & Metfies, K. (2017): Uncovering hidden biodiversity in the Cryptophyta: Clone library studies at the Helgoland time series site in the Southern German Bight indentifies the cryptophycean clade potentially responsible for the majority of its genetic diversity during the spring bloom. - Vie et Milieu 67: 27-32.
  53. Milyutina, I.A.; Aleshin, V.V.; Mikrjukov, K.A.; Kedrova, O.S. & Petrov, N.B. (2001): The unusually long small subunit ribosomal RNA gene found in amitochondriate amoeboflagellate Pelomyxa palustris: its rRNA predicted secondary structure and phylogenetic implication. - Gene 272: 131-139. Go to original source...
  54. Moncheva, S.; Boicenco, L.; Mikaelyan, A.S.; Zotov, A.; Dereziuk, N.; Gvarishvili, C.; Slabakova, N.; Mavrodieva, R.; Vlas, O.; Pautova, L.A.; Silkin, V.A.; Medinets, V.; Sahin, F. & Feyzioglu, A.M. (2019): Phytoplankton. - In: Black Sea State of Environment Report 2009-2014/5. - pp. 225-284, Commission on the Protection of the Black Sea Against Pollution, Istanbul.
  55. Müller, T.; Philippi, N.; Dandekar, T.; Schultz, J. & Wolf, M. (2007): Distinguishing species. - RNA 13: 1469-1472. Go to original source...
  56. Nakamura, Y. & Hirata, A. (2006): Plankton community structure and trophic interactions in a shallow and eutrophic estuarine system, Ariake Sound, Japan. - Aquat. Microb. Ecol. 44: 45-57. Go to original source...
  57. Nesterova, D.A., Terenko, L.M. & Terenko, G.V. (2006): Phytoplankton species list. - In: Zaytsev, Yu.P. & Alexandrov, B.G. (eds.): Northwestern Part of the Black Sea: Biology and Ecology. - pp. 557-576, Naukova Dumka, Kiev.
  58. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A. & Minh, B.Q. (2015): IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. - Mol. Biol. Evol. 32: 268-274. Go to original source...
  59. Novarino, G. (2003): A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). - Hydrobiologia 502: 225-270. Go to original source...
  60. Novarino, G. (2005): Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea). - Sci. Mar. 69: 47-74. Go to original source...
  61. Novarino, G. (2012): Cryptomonad taxonomy in the 21st century: The first two hundred years. - In: Wolowski, K., Kaczmarska, I., Ehrman, J. M. & Wojtal, A. (eds): Phycological Reports: Current Advances in Algal Taxonomy and its Applications: Phylogenetic, Ecological and Applied Perspective. - pp. 19-52, Institute of Botany, Polish Academy of Sciences, Krakow.
  62. Novarino, G. & Lucas, I.A.N. (1993): Some proposals for a new classification system of the Cryptophyceae. - Bot. J. Linn. Soc. 111: 3-21. Go to original source...
  63. Peltomaa, E.; Johnson, M.D. & Taipale, S.J. (2018): Marine cryptophytes are great sources of EPA and DHA. - Mar. Drugs 16: 1-11. Go to original source...
  64. Polikarpov, I.; Saburova, M. & Al-Yamani, F. (2020): Decadal changes in diversity and occurrence of microalgal blooms in the NW Arabian/Persian Gulf. - Deep Sea Res. Pt II 179: 104810. Go to original source...
  65. Roberts, E.C. & Laybourn-Parry, J. (1999): Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. - Freshwater Biol. 41: 737-746. Go to original source...
  66. Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A. & Huelsenbeck, J.P. (2012): MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. - Syst. Biol. 61: 539-542. Go to original source...
  67. Rouchijajnen, M.I. (1967): Species nova generis Cryptomonas (Pyrrophyta) e mari Nigro (Ponto Euxino). - Novitates systematicae plantarum non vascularium / Novosti sistematiki nizshikh rastenii 4: 71-73 (in Russian, with Latin diagnosis).
  68. Rouchijajnen, M.I. (1970): Species novae generum Cryptomonas (Pyrrophyta) et Platymonas (Chlorophyta, Chlamydomonadales) e mari Nigro. - Novitates systematicae plantarum non vascularium / Novosti sistematiki nizshikh rastenii 7: 20-23 (in Russian, with Latin diagnosis).
  69. Rouchijajnen, M.I. (1971): De flagellatis nonnullis Maris Nigris notula. - Novitates systematicae plantarum non vascularium / Novosti sistematiki nizshikh rastenii 8: 3-9 (in Russian, with Latin diagnosis).
  70. Seixas, P.; Coutinho, P.; Ferreira, M. & Otero, A. (2009): Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. - J. Exp. Mar. Biol. Ecol. 381: 1-9. Go to original source...
  71. Senicheva, M.I. (2008): Species diversity, seasonal and interannual variability microalgae in plankton off the coast of Crimea. - In: Tokarev, Yu.N., Finenko, Z.Z. & Shadrin, N.V. (eds.): The Black Sea Microalgae: Problems of Biodiversity Preservation and Biotechnological usage. - pp. 5-17, NAS of Ukraine, Institute of Biology of the Southern Seas, ECOSI Gidrofizika, Sevastopol (in Russian).
  72. Shalchian-Tabrizi, K.; Bråte, J.; Logares, R.; Klaveness, D.; Berney, C. & Jakobsen, K.S. (2008): Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. - Environ. Microbiol. 10: 2635-2644. Go to original source...
  73. Støttrup, J.G.; Richardson, K.; Kirkegaard, E. & Pihl, N.J. (1986): The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. - Aquaculture 52: 87-96. Go to original source...
  74. Šupraha, L.; Bosak, S.; Ljubešić, Z.; Mihanović, H.; Olujić, G.; Mikac, I. & Viličić, D. (2014): Cryptophyte bloom in a Mediterranean estuary: High abundance of Plagioselmis cf. prolonga in the Krka River estuary (eastern Adriatic Sea). - Sci. Mar. 78: 329-338. Go to original source...
  75. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A. & Kumar, S. (2013): MEGA6: Molecular evolutionary genetics analysis version 6.0. - Mol. Biol. Evol. 30: 2725-2729. Go to original source...
  76. Van der Auwera, G.; Chapelle, S. & De Wachter, R. (1994): Structure of the large ribosomal subunit RNA of Phytophtora megasperma, and phylogeny of the oomycetes. - FEBS Lett. 338: 133-136. Go to original source...
  77. Wolf, M.; Chen, S.; Song, J.; Ankenbrand, M. & Müller, T. (2013): Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences - a proof of concept. - PLoS One 8(6): e66726. Go to original source...
  78. Yoo, Y.D.; Seong, K.A.; Jeong, H.J.; Yih, W.; Rho, J.R.; Nam, S.W. & Kim, H.S. (2017): Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. - Harmful Algae 68: 105-117. Go to original source...
  79. Zhang, J.; Wu, C.; Pellegrini, D.; Romano, G.; Esposito, F.; Ianora, A. & Buttino, I. (2013): Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). - Aquaculture 400: 65-72. Go to original source...
  80. Zuker, M. (2003): Mfold web server for nucleic acid folding and hybridization prediction. - Nucleic Acids Res. 31: 3406-3415. Go to original source...