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Abstract: The diversity of chrysophytes is often underestimated in morphological surveys because of the
limited amount of detectable characters under the light microscope. Addressing biodiversity issues solely based
on morphological characters is further problematic since molecular analyses revealed a huge genetic diversity
within morphotypes, even showing polyphyly in some morphological defined species. In order to address the
seasonal variations of chrysophytes, 10 samples were collected in 2007 from the oligotrophic lake Fuschlsee
(Salzkammergut, Austria). By using Dinobryon as a case study, we compared different gene phylogenies of
single cells of the 18S, ITS (including ITS1, 5.8S, partial ITS2) and the mitochondrial marker COI. No clear
molecular phylogenetic separation between morphological identified cells of D. divergens and D. bavaricum
could be accomplished based on the 18S rDNA sequences. ITS and COI sequence data revealed a higher
genetic diversity then the 18S, with several independent lineages consisting of D. divergens cells. We further
encountered divergent phylogenies by comparing 18S/ITS sequence data with COI data within D. pediforme,
D. sociale and D. bavaricum lineages. By combining the results of the single cell approach with seasonal data
based on 454 pyrosequencing, we addressed the question in how far one morphological species may dominate
in the water column over the course of a single year. The results of the 454 pyrosequencing revealed that the
D. divergens/D. bavaricum lineage shows the highest abundance from all Chrysophyceae/Synurophyceae and

strong seasonal variations with peaks in May and October.
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INTRODUCTION

In the past, the exploration of protist diversity in lakes
was either focused on microscopic determination
of morphological characters (Papisak et al. 1998) or
genetic surveys, by cloning and subsequent Sanger
sequencing of selected clones (LEVEVRE et al. 2008;
Luo et al. 2011). Molecular investigations of different
organismal groups revealed high phylogenetic diversity
within one morphotype, showing the difficulties
in addressing biodiversity issues based solely on
morphological characters (Bock et al. 2011a; KRIENITZ
et al. 2012; Jena et al. 2014). On the other hand, the
ecology of many protists is still understudied. The
same morphospecies may occur in nearby habitats, but
is represented by different genotypes, demonstrating
the inadequate knowledge of the ecology of many
protist groups (AUINGER et al. 2008; PranpL et al. 2009;
Bock et al. 2011b). Morphological convergence, often
a response to habitat or herbivore pressure, further
adds to the problem of assigning morphospecies to

phylogenetic lineages. Specifically, simple body forms
can lead to an underestimation of genetic diversity, as
was shown in the example of the “green ball” Chlorella,
which was detected in several independent phylogenetic
lineages corresponding to different molecular defined
genera and species (Huss et al. 1999; Krienitz et
al. 2004; Neustupa et al. 2009) or for the colourless
chrysophyte Spumella (FINDENIG et al. 2010). However,
despite the general tendency to underestimate diversity
in morphological analyses, the opposite, i.e. phenotypic
plasticity as a response to habitat or herbivore pressure,
has also been demonstrated for several algal species,
like Scenedesmus or Micractinium (e.g. TRAINOR 1998;
LURrLING 1998, 1999; Luo et al. 2005, 2006).

Since the development of next—generation
sequencing (NGS) technologies, the analyses of
biodiversity shifted more to focusing on genetic
variation within a given sample. Short sequences
obtained by NGS technologies are searched against
a nucleotide database (NCBI or similar databases).
In undersampled/understudied groups of organisms,
these searches obtain no or misleading results, as
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many of the sequences cannot be assigned to a specific
name or group of organism since the molecular data
is missing, or no taxonomic information is assigned
to the reference sequences. An abundant group of
mainly unicellular or colonial planktonic protists
are chrysophytes (Chrysophyceae, Stramenopiles).
They occur in marine and freshwater habitats and
are one of the most prominent phytoplankton groups
in alpine lakes (TorotT! et al. 2003; WiLLEN 2003).
They encompass varying nutritional strategies,
including phototrophy, heterotrophy and mixotrophy,
and are therefore important primary producers in
aquatic systems as well as grazers of bacteria—sized
microorganisms (FINLAY & EsSTEBAN 1998; BOENIGK &
ARNDT 2002). One dominant mixotrophic chrysophyte
intemperate lakes is Dinobryon Ehrenberg 1834 (SILVER
& CHock 1986; HitchmaN & Jones 2000; WATSON
et al. 2001; Kamiunke et al. 2007). This distinctive
cylindrical, vase— or funnel-shaped chrysophyte was
firstly described by Ehrenberg in 1834 on the basis
of Dinobryon sertularia EHRENBERG and is mainly
found in oligotrophic and phosphorus—poor freshwater
habitats (LEe 1980; SANDGREN 1988; CANTER—LUND &
Lunp 1995). The genus itself is known for its spring
peak in the early stages of the thermal stratification
in temperate lakes and forms a second, less abundant
peak in late autumn (ReynoLD 1980; ARMSTRONG
1985; Tas 2010). The members of this group are
morphologically separated by the form and shape of the
lorica consisting of cellulosic microfibrils. However,
even for such morphologically distinct and abundant
protist genera the taxonomic value of morphological
criteria on the species level is doubtful (MEDINGER et
al. 2011). Molecular phylogenies revealed that the
distinct morphotype of Dinobryon divergens is either
a polyphyletic cryptic species complex or comprises
morphological variants of a much broader ‘biological’
species (JosT et al. 2010; MEDINGER 2011).

In order to address the seasonal variations
of chrysophytes, 10 samples were collected from the
oligotrophic lake Fuschlsee (Salzkammergut, Austria),
from the time of ice brake throughout the summer
period to the winter season. By using Dinobryon as a
case study, we compared different gene phylogenies
based on single cells and 454 pyrosequencing data to
investigate how far one morphological species may
dominate the water column over the year and the
suitability of the V4 region as marker gene.

MATERIALS AND METHODS

Sampling. The molecular diversity and seasonality of the
chrysophytes (including Synurophyceae) of the oligotrophic
Lake Fuschlsee, Salzkammergut, Austria was evaluated based
on a regular sampling campaign in 2007 (MEDINGER et al.
2010; NortE et al. 2010). Between March 2007 and October
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2007, integrated samples covering the upper 10 m of the water
column within the pelagic zone were collected every three
weeks (10 samples in total, starting in week 13 at the end
of March). Samples were filtered onto 0.2 pm polycarbonate
filters, the filters air dried and frozen at —80 °C until DNA
extraction for the high—throughput sequencing occurred.
Additional samples were taken for single cell analysis with
a 6 pm plankton net. The net samples were immediately
transferred into 100 ml nontransparent flasks and preserved
with Lugol’s iodine solution (2% final concentration).
Net—samples were stored at 4 °C in the dark until further
processing and preparation for morphological analysis and
single—cell PCR. Additionally, Lugol’s iodine solution
preserved Net—samples from the nearby lakes Loibersbacher
Teiche (LO), Wallersee (Wa), Mondsee (Mo), Wolfgangsee
(Wo), Grafenbergsee (GF) and Bad Heratingersee (He) were
analyzed by light microscopy; if present, cells/colonies with
Dinobryon morphology were picked for single cell analyses.

Sample preparation for Next Generation Sequencing and
Bioinformatic analyses. Genomic DNA was extracted from
the 0.2 pm polycarbonate filters with the DNeasy Tissue kit
(Qiagen Gmbh Hilden, Germany) and amplified by HPLC
purified PCR primers for the V3—V4 region of the SSU rRNA
gene (fw: 5’—= ATTAGGGTTCGATTCCGGAGAGG-3’, rv:
5’-CTGGAATTACCGCGGSTGCTG - 3°) following the
protocol of NoLtE et al. (2010). PCR products were pooled
and sequenced on one full picotiterplate on a 454 Roche FLX
sequencer. The quality filtering included adapter and primer
clipping, removal of sequences that include uncertain bases
(Ns), a quality score < 24 when averaged across the read after
clipping adapters and primers or a minimum sequence length
below 200 bp (including PCR primers) (for details see NOLTE
et al. 2010; PanDEY et al. 2010). Taxonomic classification
and bioinformatic analyses were done as already described
by Norte et al. (2010) and PanpEy et al. (2010). Reads
which were classified as Chrysophyceae or Synurophyceae
according to NCBI blast search were extracted and further
processed. This resulted in 293 different sequences of
approximately 180 bp lengths.

Standardization of reads and abundance data. In order
to compare the abundance counts between samples taken
at different times, the sequence count data were set to the
same number by randomly selecting the equal number of
sequences in each sample until the number from the date with
the lowest amount of sequences were matched (for details see
the already described protocol in NoLTE et al. 2010).

Phylogenetic placement of the 454 reads and seasonal
data. A dataset of 160 SSU rRNA gene reference
sequences with 1218 bases, representing the major clades
of the Chrysophyceae, was initially aligned using Clustal W
(THompsoN et al. 1994) and manually adjusted by eye.
RAxML 7.2.7 with the General Time Reversible model of
nucleotide substitution (Stamatakis et al. 2005) was used
to create the phylogenetic reference tree (Fig. S1). The 293
different sequences from the 454 pyrosequencing (“query”
sequences) were manually aligned and merged with the
reference alignment. Query sequences were then placed on a
phylogenetic tree by using pplacer v1.1 (MAaTseN et al. 2010).
Lineages containing only 454 reads were manually collapsed
and combined to one lineage on a 99% similarity threshold.
The corresponding phylogenetic tree was divided in two
parts (Figs 1, S2, S3). The uncertainty of a placement was
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evaluated with the EDPL method (implemented in pplacer)
using maximum likelihood and posterior probability for the
weight. The EDPL is the expected distance between placement
locations. The values are visualized on the phylogenetic tree
in square brackets after the read ID.

Light microscopy. Aliquots of 10 ml Lugol fixed samples
were settled in Uterm6hl chambers onto coverslips
(UtermOHL 1958) and analyzed by light microscopy at a
total magnification of 200 (Zeiss Axiovert200, Zeiss, Jena,
Germany). The samples were scanned for Dinobryon cells
and appropriate cells were documented with Nikon NIS
Elements software and identified according to STARMACH
(1985).

Single cell PCR. To obtain 18S, ITS (including ITS1, 5.88S,
ITS2) and COI gene sequences from as many different
Dinobryon cells as possible, we applied a modified multiplex
single—cell PCR (SC PCR) approach after Jost et al.
(2010). Briefly, Dinobryon colonies and single cells were
isolated from plankton samples preserved with Lugol's
iodine solution according to the protocol of AUINGER et al.
(2008). The picked cells were washed with sterile medium
to remove freely dissolved DNA from the sample (MEDINGER
et al. 2010). The multiplex single—cell PCR followed the
protocol of Jost et al. (2010), using the primers Eukf (5—
GAAACTGCGAATGGCTCATTATATCAG — 3") (modified
EKS82f primer after AuINGER et al. 2008) and ITSJlar
(5- GCTTAAATTCAGCGGGTATTCTT - 3°) (Jost
unpublished) for the SSU-ITS2 fragment and Coxf (5'-
TCTAGTATATTAGGAACCACGATGTC — 3”) and Cox1br
(5'- ACGGTAAACATATGATGAGCCCAAAC - 3") for
COI (Jost et al. 2010; Jost unpublished). Amplification of
the COI gene of Dinobryon pediforme cells was carried out
using DpedCO1f (5" — GCGCAGCTTATGTATCCAGGTG —
3’) and DpedCO1r (5'- CATAAGCCATGCCTAGATAGCC
—3") (Jost unpublished). As this primer pair did not work in
liaison with the primer targeting the ribosomal operon in the
multiplex approach, we split the solution with the disrupted
single cell and amplified the ribosomal operon and the COI
separately for D. pediforme. The COI amplification failed for
all D. sociale strains. NCBI accession numbers of the newly
sequenced cells are provided in Table S1.

Phylogenetic analyses on SSU, ITS and COI on single
cells. Three different alignments were constructed for the
phylogenetic analyses with the newly obtained sequences
and additional sequences obtained from NCBI (http://www.
ncbi.nlm.nih.gov/) on the basis of previous publications
(e.g. Jost et al. 2010; MEDINGER et al. 2010; SILBERFELD et al.
2010; Kraveness et al. 2011). The sequences were initially
aligned using ClustelW (THompsoN et al. 1994) and adjusted
by eye using the SequentiX Alignment Editor (HEPPERLE
2004). Ambiguous aligned regions were excluded from the
alignment. The phylogeny of the 18S (Fig. S4) was inferred
from an aligned dataset including 129 chrysophycean
sequences based on 1197 characters. Four sequences (Syn-
chroma grande DQ788730, Leukarachnion sp. FI356265,
Nannochloropsis granulata JF489984, Picophagus flagella-
tus AF185051) were chosen as outgroup according to previ-
ous publications (PaTiL et al. 1999; Kraveness et al. 2011).
The concatenated 18S—ITS (including 18S, ITS1, 5.8S, ITS2)
phylogeny (Fig. 2) was inferred from a partitioned dataset
of 96 Dinobryon— sequences with 2012 bases. Ambiguous
aligned regions were excluded from the alignment. The COI
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phylogeny (Fig. 3) was inferred from 141 genomic sequences
with 567 characters. Since three sequences of Dinobryon
pediforme (culture LO226KS, cells LO236_ 2, LO236_3)
derivate strongly in their sequence from other chrysophytes,
a NCBI blastn search for somewhat similar sequences were
conducted and the resulted related sequences of the major
clades of the Phacophyceae were chosen to represent this
group. The Dinobryon clusters were designated according to
Josr et al. (2010).

Each phylogeny presented here was inferred by
maximum likelihood settings using Treefinder (JoBB et
al. 2004). The most appropriate substitution models were
estimated using the AICc criteria within Treefinder (for
SSU: GTR+I+G model; partitioned dataset: SSU: TN, ITS1:
HKY, 5.8S: HKY, ITS2: J2; COI: HKY). Bayesian posterior
probabilities (BPP) were calculated by using MrBayes version
3.1 (RonquisT & HuerLsenBeEck 2003). For each presented
tree, two runs with four chains of Markov chain Monte Carlo
(MCMC) iterations were performed with tree sampling every
100 generations. The GTR+G model with gamma shape
parameter and proportion of invariable sites were chosen for
the datasets. For the partitioned dataset the parameters were
unlinked and allowed to vary across the partitions. Tracer
V1.4 (RamBaut & DruMMOND 2007) was used to check the
stationary phase and to identify an appropriate burn in value.
The first 25% of the trees were discarded as burn—in and 50%
majority—rule consensus trees were calculated for posterior
probabilities. To test the confidence of the tree topologies,
bootstrap analyses were carried out for distance (neighbor
joining, NJ; 1000 pseudoreplicates) and maximum parsimony
analyses (MP, 1000 pseudoreplicates; with heuristic search
options based on random taxon addition, tree—bisection—
reconnection (TBR) branch swapping algorithm and
Multrees option enabled) using PAUP*, portable version
4.0b10 (Sworrorp 2002), and for maximum likelihood using
Treefinder (ML, 1000 pseudoreplicates; settings as described
above), respectively.

RESULTS

Due to the phylogenetic placement of the 454 reads,
huge seasonal variations could be observed for several
lineages (see Figs 1, S2, S3). An alternate pattern
occurred within the Paraphysomonadidae (ID 122,
ID 127, ID 103); within lineages related to Apoika sp.
(ID 6, ID 106); within Synurales (IDs 107, 28) and
Chromulinales (IDs 51, 65). The highest abundance
was observed for the ID 1 (Dinobryon divergens/
bavaricum lineage) within the Ochromonadales. The
main peak occurred in the first third of the year, and
a second peak in October. The same peaks could be
observed on a smaller scale for the ID 58 within the
Dinobryon sociale lineage. The results of the SC
PCR and the corresponding phylogenies show that
D. divergens contains a high genetic diversity based
on ITS and COI data (Figs 2, 3). Divergent clustering
could be observed for D. pediforme who clustered
within the Phaeophyceae based on COI information.
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Phylogenetic placement of 454 reads and seasonal
abundance

After the standardization of the reads, NCBI blast
resulted in 27.698 sequence reads out of 139.318
reads which were classified as Chrysophyceae/
Synurophyceae as the nearest NCBI blast hit. These
sequences were applied to a reference alignment (see
reference tree Fig. S1) and phylogenetically placed on
the ML phylogram by using the program pplacer v1.1
(MATSEN et al. 2010).

The reads clustered in all major clades of the
Chrysophyceae (Figs 1, S2). In the applied abundance
data, a recurring seasonal pattern for a broad range of
phylogenetic lineages could be observed. Noticeable
was an alternate occurrence of three lineages within
the Paraphysomonadidae. Seq. ID 122 (related to
Paraphysomonas bandaiensis) had its main peak in the
first third of the year, intersecting with ID127, which
last from May to July followed by ID 103. A similar
pattern could be observed with reads closely related to
Apoika sp. Seq. ID 29 had a total abundance above
1000 reads and occurred more or less stable from
April to September. On top of that, the Seq. ID 6 and
ID 106 alternated in so far, that ID 6 was found with
high abundance from March to early May, replaced by
high read counts of ID 106 from end of May to August
(while ID 6 was absent) until it occurred again from
September to October, where ID 106 was absent. A
similar pattern was observed for the Synurales (IDs
107 and 28) and Chromulinales (IDs 51, 65). The
sequence with the highest amount of reads was ID 1,
clustering within the Ochromonadales, specifically
within Dinobryon divergens/bavaricum lineage. It
showed a seasonal pattern with high abundance in the
first third of the year, decreasing during the summer
time and high amount of reads at the end of the
vegetation period. This applies on a smaller scale to
the ID 58 within the D. sociale lineage.

Morphological observations of single cells of
Dinobryon species

The isolated cells showed typical characters for
members of the genus Dinobryon: Cells with two
heterokont flagella, surrounded by a flasked—shaped
lorica. They occurred in free living solitary or branched
colonies. The following species were morphological
determined:

Dinobryon bavaricum: Colonies narrow and long.
The lorica is divided into two parts, one upper
cylindrical part and a long lower, narrow pointed part.
Lorica 40-71pm long in total. Lengths of the upper
nearly cylindrical part 19-31um. The opening at the
cylindrical part is 6.3-8.5 pm wide, the lower end of
the cylindrical part 6.1-8.5um wide. The cells vary
from 10.5-20%4.8-7.3 um.

Dinobryon divergens: Lorica curved, 37-50pm
long. The lorica is divided into two parts: one upper
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cylindrical part and a short lower, pointed part. Lower
part sometimes oblique pointed. Cylindrical part
15-33.5um long, opening at the upper end 6.5-10um
wide, at the lower end 6.5-10.05 pm. The cells range
from 8.1-15.3x4.2-7.1 pm.

Dinobryon sociale: Lorica conical, 28-45.8 pm long.
Lorica from the upper end gradually becoming narrow.
Opening 7.1-9.2 pm wide. The cells range from 6.7—
14x4.5-6.2 pm.

Dinobryon pediforme: Similar to D. divergens. Lorica
cylindrical with a oblique pointed tip. Lorica 17-21 um
long, Opening 4.7-6.9 nm wide, lower part 4.9-6.1um
wide. Cells 6.1-12.3%3.9-5.4 um.

Phylogenetic analyses on single cells

The general order of the SSU phylogeny (Fig. S4)
was congruent with previous publications (JosT et al.
2010; Kraveness et al. 2011). Dinobryon sequences
formed a clade within the Ochromonadales. The
Dinobryon—clade was subdivided into 4 different main
lineages with different statistical support. The two
SSU sequences of D. pediforme (strain LO226KS,
cell LO236 1) formed a lineage next to previously
published sequences of D. sertularia, D. cylindricum,
D. sociale var. americana and D. cf. sociale (1.0 BPP
and 100 bootstrap support for ML, MP, NJ). Another
lineage consisted of newly sequenced D. sociale
sequences. The last lineage comprised morphospecies
of D. divergens and D. bavaricum. The lineage can be
subdivided into two clusters of D. divergens (cluster
1 and cluster 2), one sequence of D. divergens with
no affiliation and one cluster of D. bavaricum.
The separation into these clusters, however, was
statistically not or only slightly significant. The
analyses of the concatenated set of SSU and ITS
(including 5.8S) sequences (Fig. 2) showed the same
pattern for the D. sociale and D. pediforme lincages as
the SSU phylogeny, but a higher phylogenetic diversity
for the D. bavaricum/D. divergens lineage. This
lineage contained the statistically highly supported
D. divergens cluster 1 (1.0 BPP and 100 bootstrap
support for ML, MP, NJ) which comprises single cell
sequences from different sampled lakes. Next to it a
D. bavaricum lineage clustered with high statistical
support (1.0 BPP and 100 bootstrap support for ML,
MP, NIJ). Together they formed a clade with high
statistical support for ML, but medium support for all
other analyses (0.95 BPP, bootstrap support of 100
for ML, 74 for MP and 88 for NJ). At the top the D.
divergens cluster 2 could be divided into two lineages:
one comprising 4 sequences originating from cells of
the lake Grafenbergsee (GF39 1 — GF39 4) (1.0 BPP,
100 bootstrap support for ML, MP, NJ), and a second
lineage with cell from different origins (1.0 BPP, 100
bootstrap support for ML, MP, NJ). By comparing
the morphological observations of the investigated D.
divergens cells with the phylogenies, no separation
characters for phylogenetic lineages could be observed.
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Fig. 1. Phylogenetic placement of 454 reads showing the Ochromonadales as part of a maximum likelihood reference phylogeny of the
Chrysophyceae. For the whole phylogeny (see Figs S2 & S3), 160 SSU rRNA gene sequences with 1218 bases were used as references and
the phylogeny calculated with RAXML 7.2.7 with the GTR model of nucleotide substitution (Stamatakis et al. 2005). Query sequences were
placed on the phylogeny by using pplacer vi.1 (MatseN et al. 2010). The clade of the Ochromonadales was excluded manually. Values in square
brackets after the 454 IDs represent the EDPL uncertainty values (first value is based on based on ML and second value based on Bayesian
analyses). Lineages containing solely 454 reads were collapsed on a 99% pair wise distance threshold and the abundance data was summarized.
To the right of the tree, the abundance data is summarized into columns of each sample date. The left-most column, “total”, contains the sum
of all standardized reads, followed by sequence counts for the different sampling dates. The zero abundance of some sequences is a result of

the standardization of reads where some rare sequences where not chosen during the process of standardization.
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The investigated cells of the D. divergens cluster 1 and
2 show a both cases a broad range in terms of cell size
and lorica size.

SSU/ITS and COI phylogeny (Figs 2, 3) were
congruent for most of the investigated cells, i.e.
sequences fell in the respective clusters. One exception
occurred in the Dinobryon divergens cluster 2. The
lineage containing GF39 1-GF39 4 formed according
to their COI phylogeny a separate lineage outside the
main D. divergens cluster 2. Similar exceptions were
noticeable for the cells Wa26 2 and Wa33 3. They
belonged to the D. divergens cluster 1 according to
18S/ITS information, but formed a separate lincage
according to COI information. Divergent phylogenies
were observed for Fu34 8 (D. bavaricum morphotype,
Fig. 4) and Fu29 2 (D. sociale, Fig. 5). Fu34 8
clustered according to the 18S—ITS phylogeny (Fig. 2)
within the Dinobryon bavaricum lineage, which was
congruent with the morphology. According to the COI
information, this cell clusters within the D. divergens
cluster 2 (Fig. 3). Similarly, D. sociale Fu29 2 clustered
in the D. sociale lineage according to the 18S-ITS
phylogeny but in the D. divergens cluster 2 according
to COI information. Huge discrepancies were also
observed for the analyzed D. pediforme single cells
(L0236 2, L0236 3) and one D. pediforme culture
from the culture collection (strain LO226KS of the
Laboratory Jens Boenigk, University Essen), all
isolated from the lake Loibersbacher Teiche, Austria.
According to 18S and ITS analyses they belong to the
Chrysophyceae. In contrast, no unambiguous position
could be determined based on their COI phylogeny. A
clear phylogenetic placement was not possible, due to
lacking close relatives. However, all three sequences
clustered together within the Phaeophyceae, near
members of the Ralfsiales according to their COI gene
phylogeny (Fig. 3). To confirm this phylogeny, we
conducted a ML phylogeny based on their amino acid
sequences and found similar results (for details about
methods and results see Fig. S5 and corresponding
legend).

DiscussION

Seasonal shifts in plankton communities are widely
documented in previous studies (BEAVER & CHRISMAN
1989; Papisak et al. 1998; GAEDKE & WickHam 2004).
However, until now, many approaches consisted only
of morphological surveys and neglected differences
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between phylogenetic lineages. Recent morphological
work shows that many species, defined by morphology,
are in fact polyphyletic, belonging to different
phylogenetic lineages and cannot be separated by their
morphology (KrieniTz et al. 2010; FINDENIG et al. 2010;
Bock et al. 2011a,b). As a consequence, morphological
determination might not be sufficient for assessing
diversity and seasonal shifts of aquatic systems. By
using Lake Fuschlsee as an example for seasonal
changes in plankton communities, our study, like two
previous studies, focused on genetic differences within
a plankton community during one year (MEDINGER et al.
2010; NortE et al. 2010). NocLtE et al. (2010) focused on
the unpigmented flagellates affiliated with the Spumella
morphotype. Several previous studies showed that
Spumella—like strains cluster in several phylogenetic
lineages and are most probably polyphyletic and
cannot be separated by light microscopical characters
(Boenigk et al. 2005; FiNnpenNING et al. 2010). The
molecular approach of NoLtE et al. (2010) revealed that
Spumella—like organisms have seasonal abundance
patterns that are consistent with the temperature
preference of the reference strains (originating from
different environments). The 454 reads associated
with Spumella—like isolates from cold environments
were more abundant in the first third of the year,
while sequences associated with isolates from warmer
environments were more frequent during the summer
(for details see NoLTE et al. 2010). This example shows
the advantage of molecular tools like 454 sequencing
in addressing ecological/diversity questions. In a
morphological survey, Spumella—like flagellates would
have probably been identified as a single species, and
these interesting and ecological important shifts in the
Spumella community might have been missed.

Our analyses of the 454 reads revealed that
the D. divergens/D. bavaricum lineage showed the
highest overall read number from all Chrysophyceae/
Synurophyceae but also strong seasonal variations.
Several previous studies have shown that Dinobryon
gains advantages due to its mixotrophic lifestyle when
nutrients are limited (PuNerTi & BETTINETTI 1999;
Tas et al. 2010). Although Dinobryon has a prominent
chloroplast and is able to photosynthesize, the species
also feeds on bacteria and plays a significant role in
the aquatic food web due to their predation on bacteria
(Brp & KALFF 1986; VEEN 1991). With a phosphor
concentration of 5 mg.m3, Lake Fuschlsee is arelatively
phosphorous—poor inland water body (GAaLLER 2006).
Similarly, Dinobryon in Lake Constance was shown
exemplarily to gain competition advantages during the

<
<

Fig. 2. Maximum likelihood phylogeny based on a concatenated set of 18S—ITS rRNA (including 18S, ITS1, 5.8S and partial ITS2) gene
sequences. The phylogeny was inferred from a partitioned dataset of 96 Dinobryon— sequences with 2012 bases of different Dinobryon single
cells using Treefinder (JoBB et al. 2004) with the models SSU: TN, ITS1: HKY, 5.8S: HKY, ITS2: J2. Values at the nodes indicate statistical
support estimated by four methods — Bayesian support (BPP), maximum likelihood (ML), maximum parsimony (MP) and neighbor joining
(NJ). Hyphens indicate support below 50% for ML, MP, NJ and below 0.95 for BPP.
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early stages of the year in oligotrophic, phosphorous—
poor waters, due to its ability to obtain organic
phosphorus from its bacterial prey (KAMJUNKE et al.
2007). This might be an explanation of the seasonal
peaks of Dinobryon in our study as well.

The reliability of 454 pyrosequencing results
depend on several factors: e.g. the taxonomic coverage
of the DNA reference library used or the suitability
of the chosen markers to distinguish between closely
related species. To evaluate the resolution of the
V4 region, we combined the information of the 454
phylogenetic placement with the Dinobryon single—
cell analyses on different genes. No clear separation
between D. divergens and D. bavaricum cells could
be accomplished based on the SSU rDNA sequences,
which is reflected in phylogenetic placement of the
Seq. ID 6 within the cluster D. divergens /D. bavaricum
(Fig. 1). Our results confirm the previous findings of
Jost et al. (2010) that D. divergens contains a high
genetic diversity based on ITS and COI data (Figs 2,
3). Both phylogenies resolve several clusters of D.
divergens, intermixed with a D. bavaricum cluster,
demonstrating, that the Dinobryon morphotype,
especially D. divergens, is genetically more diverse
than expected from its morphology. By comparing
the molecular results with the morphological data on
lorica and cell size and range, no clear pattern could be
identified. The variation in size and shape was huge for
all phylogenetic lineages, and no trend or separation
characters could be identified. To make matters even
more unclear, isolated strains of Dinobryon species
change their lorica shape (especially the size) under
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culture conditions (personal observation) making the
lorica a not reliable character to distinguish species.
Whether we have polyphyletic cryptic species
complexes or morphological variants of a much
broader ‘biological’ species is open for discussion.

We also encountered divergent phylogenies
within D. pediforme, D. sociale and D. bavaricum
lineages. According to COI information, D. pediforme
clustered within the Phacophyceae and some D. sociale
and D. bavaricum cells clustered within the D. divergens
lineage respectively (controversy to their position
based on 18S-ITS sequence data). This deviation of
the COI phylogeny from the ITS phylogeny and the
morphology is difficult to explain. As the results are
not solely based on environmental samples but on one
culture as well, we can, with near certainty, exclude
factors like sequencing artifacts. Inconsistencies
arising from a comparison of phylogenies based on
different genes for the same taxa are known from
several protist groups (SHALCHIAN-TABRIZI et al.
2006; Stoeck et al. 2008). Nevertheless, a proven
explanation for such inconsistencies is still missing.
Possible explanations include differential evolutionary
rates of genes in different organisms (PHILIPPE et al.
2000), hybridization beyond species borders or lateral/
horizontal gene transfer. Lateral gene transfer, in
particular, has been accepted for prokaryotic organisms
for some time, but only recently have studies focused
on the same phenomenon in eukaryotes (ANDERSSON
et al. 2003; AnDERssoN 2005 and citations within). It
is assumed that gene transfer occurs in protists with
phagotrophic lifestyles in the same frequency as in

Fig. 4. Microphotograph of Dinobryon bavaricum Fu34_8. Scale bar 10pum.
Fig.5. Microphotograph of Dinobryon sociale Fu29 2. Scale bar 10pm.
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Fig. 3. Maximum likelihood phylogeny of the nucleotide COI gene data of representatives of the Straminopiles based on 141 genomic sequences
with 567 characters. Maximum likelihood was calculated using Treefinder (JoBB et al. 2004) with the HKY model. Values at the nodes indicate
statistical support estimated by four methods — Bayesian posterior probability (BPP), maximum likelihood (ML), maximum parsimony (MP)
and neighbor joining (NJ). Hyphens indicate support below 50% for ML, MP, NJ and below 0.95 for BPP. Single cells originating from the
same lake (and isolation date) which have the same sequence were summarized on one line to reduce the size of the figure.
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prokaryotic groups. Chrysophytes and specifically
Dinobryon spp. are certainly mixotrophic and sexually
reproducing. Thus, gene exchange by hybridization,
as well as lateral gene transfer from ingested food
items, may possibly play a role. Further, lateral gene
transfer by viral vectors may also occur. Nevertheless,
the COI placement of D. pediforme within the
Phaeophyceae remains speculative as these organisms
live in different habitats. Nevertheless, as this result
was obtained independently not only from several
single cells but also from mono—algal cultures, we can
exclude contaminations with certainty. In concert with
other deviating phylogenies within the chrysophytes,
e.g. for colourless strains (Stoeck et al. 2008) and
other Dinobryon strains (this study), these results
indicate that further broad—scale analyses of potential
horizontal gene transfers in protists are needed. This
and the cited studies suggest that chrysophytes might
be a particularly well-suited target group for such
work.
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Table S1. Newly obtained accession numbers for the analyzed regions.

Morphological designation NCBI Acc.nr SSU, NCBI Acc.nr COI
ITS1,5.8S,ITS2

Fu34_8 Dinobryon bavaricum KJ579311 KJ579375
Fud4 1 Dinobryon bavaricum KJ579422
HE33 4 Dinobryon bavaricum KJ579312 KJ579387
HE33 7 Dinobryon bavaricum KJ579313 KJ579388
Mo33 1 Dinobryon bavaricum KJ579314 KJ579399
Mo33 2 Dinobryon bavaricum KJ579315 KJ579400
Mo33 3 Dinobryon bavaricum KJ579316 KJ579401
Mo33 4 Dinobryon bavaricum KJ579317 KJ579402
Ful6 3 Dinobryon divergens KJ579349
Ful6 1 Dinobryon divergens KJ579348
Ful6 5 Dinobryon divergens KJ579350
Fulé 7 Dinobryon divergens KJ579318 KJ579351
Ful6 8 Dinobryon divergens KJ579319 KJ579352
Fu20 1 Dinobryon divergens KJ579320 KJ579353
Fu20 4 Dinobryon divergens KJ579354
Fu20 5 Dinobryon divergens KJ579355
Fu20 6 Dinobryon divergens KJ579356
Fu20 7 Dinobryon divergens KJ579357
Fu22 3 Dinobryon divergens KJ579359
Fu22 1 Dinobryon divergens KJ579358
Fu22 5 Dinobryon divergens KJ579360
Fu22 7 Dinobryon divergens KJ579361
Fu24 3 Dinobryon divergens KJ579362
Fu26 2 Dinobryon divergens KJ579363
Fu26 4 Dinobryon divergens KJ579321 KJ579364
Fu26 5 Dinobryon divergens KJ579322 KJ579365
Fu28 6 Dinobryon divergens KJ579323 KJ579366
Fu28 7 Dinobryon divergens KJ579324 KJ579367
Fu28 8 Dinobryon divergens KJ579368
Fu29 4 Dinobryon divergens KJ579370
Fu29 6 Dinobryon divergens KJ579371
Fu29 7 Dinobryon divergens KJ579325

Fu29 9 Dinobryon divergens KJ579372
Fu32 2 Dinobryon divergens KJ579373
Fu32 5 Dinobryon divergens KJ579374
Fu38 4 Dinobryon divergens KJ579376
Fu40 5 Dinobryon divergens KJ579377




Table S1 Cont.

Fud4 2
Fu46_1
Fud6 4
Fud6_6
Fu46_8
Fu50_1
Fu50_5
Fu50_7
GF39_1
GF39_2
GF39_3
GF39_4
HE25 1
IM39 3
IM39 4
MO33_5
OT33 3
OT33 2
Sc33 3
Sc33 1
Sc33 2
Wa20 7
Wa20 8
Wa20 9
Wa26_18
Wa26_11
Wa26_12
Wa26_13
Wa26_14
Wa26_ 15
Wa26_16
Wa26_6
Wo33 4
Wo33 5
Wo33_6
LO226KS
L0236 1
L0236 2

Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon divergens
Dinobryon pediforme
Dinobryon pediforme
Dinobryon pediforme

KJ579326

KJ579327

KJ579328
KJ579329
KJ579330
KJ579331
KJ579332
KJ579333
KJ579334
KJ579335

KJ579336

KJ579337
KJ579338
KJ579339

KJ579340
KJ579341

KJ579342
KJ579343
KJ579344

KJ579346
KJ579345

KJ913667
KJ579347

KJ579378
KJ579379
KJ579380
KJ579381
KJ579382
KJ579383
KJ579384
KJ579385
KJ579393
KJ579394
KJ579395
KJ579396
KJ579386
KJ579397
KJ579398
KJ579403
KJ579416
KJ579414
KJ579418
KJ579404
KJ579415
KJ579390
KJ579389
KJ579391
KJ579411
KJ579405
KJ579406
KJ579407
KJ579408
KJ579409
KJ579410
KJ579392
KJ579412
KJ579413
KJ579417
KJ579421

KJ579419
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L0236 3 Dinobryon pediforme KJ579420
Fu29 10 Dinobryon sociale KJ579296

Fu29 2 Dinobryon sociale KJ579295 KJ579369

Fu32 4 Dinobryon sociale KJ579297

Fu36 4 Dinobryon sociale KJ579298

Fu36 5 Dinobryon sociale KJ579299

Fu38 1 Dinobryon sociale KJ579300

Fu38 3 Dinobryon sociale KJ579301

Fu38 6 Dinobryon sociale KJ579302

Fu38 7 Dinobryon sociale KJ579303

Fu40 1 Dinobryon sociale KJ579304

Fu40 2 Dinobryon sociale KJ579305

Fu40 4 Dinobryon sociale KJ579306

Fu40 7 Dinobryon sociale KJ579307

Fu40 8 Dinobryon sociale KJ579308

Fu42 6 Dinobryon sociale KJ579309

Fu42 8 Dinobryon sociale KJ579310

»
>

Fig. S1. Maximum likelihood phylogeny based on SSU rRNA of the chryosphytes used as a reference tree for the phylogenetic placement of
the 454 reads. 160 SSU rRNA gene sequences with 1218 bases were used as references and the maximum likelihood phylogeny was calculated
with RAXML 7.2.7 with the General Time Reversible model of nucleotide substitution (STAMATAKIS et al. 2005).
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Fig. S3. The figure shows the Ochromonadales as part of the phylogenetic placement of the 454 reads within the Chrysophyceae (see Fig. S2).
The phylogenetic lineages of the remaining clades of the Chrysophyceae are collapsed and shown as triangular boxes.

<

ﬁg. S2. Phylogenetic placement of 454 reads (293 different sequences, each reads contained approx. 180bp) on a maximum likelihood reference
tree of the Chrysophyceae. 160 SSU rRNA gene sequences with 1218 bases were used as references and the phylogeny calculated with RAXML
7.2.7 with the GTR model of nucleotide substitution (Stamarakis et al. 2005). Query sequences were placed on the phylogeny by using pplacer
vi.1 (MatsEN et al. 2010). Values in square brackets after the 454 IDs represent the EDPL uncertainty values (first value is based on ML and
second value based on Bayesian analyses). Lineages containing solely 454 reads were collapsed on a 99% pair wise distance threshold. To
the right of the tree, the abundance data is summarized into columns of each sample date. The left—most column, “total” contains the sum of
all standardized reads, followed by sequence counts for the different sampling dates. The zero abundance of some sequences is a result of the
standardization of reads where some rare sequences where not chosen during the process of standardization. The clade of the Ochromonadales
was excluded manually due to limited space and is shown in Figure 1 and Fig. S3.
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0.95 for BPP.
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Fig. S5. Maximum likelihood phylogeny based on COI
amino acids information. Alignment consisted of 141 taxa
with 189 characters. Phylogeny presented here was inferred
by maximum likelihood settings using Treefinder (JoBB
et al. 2004). The most appropriate substitution models
were estimated using the AICc criteria within Treefinder
(model mtArt:G:5). Bayesian posterior probabilities were
calculated by using MrBayes version 3.1 (RonqQuisT &
HueLsenseck 2003) with the mtrev model and two runs
with four chains of Markov chain Monte Carlo (MCMC)
iterations, tree sampling every 100 generations. Tracer
V1.4 (RamBautr & Drummonp 2007) was used to check
the stationary phase and to identify an appropriate burn in
value. The first 25% of the trees were discarded as burn—
in and 50% majority—rule consensus trees were calculated
for posterior probabilities (BPP). To test the confidence
of the tree topologies, bootstrap analyses were carried out
for distance (NJ; 1000 pseudoreplicates) and MP (1000
pseudoreplicates; with heuristic search options based on
random taxon addition, tree—bisection—reconnection (TBR)
branch swapping algorithm and Multrees option enabled)
using PAUP*, portable version 4.0b10 (Sworrorp 2002),
and for ML using Treefinder (1000 pseudoreplicates;
settings as described above).



